
Don’t Panic!

A position on curricula for concurrency

Stephen Kell

Stephen.Kell@cl.cam.ac.uk

Abstract

Concurrency is a pervasive concept and

should be taught as such. However, concurrent

programming is intrinsically hard, and know-

ing how and when to avoid it is as important

as knowing how to do it.

1 Introduction

I’m a graduate student and have taught second-year
undergraduates in small-group sessions on concurrent
programming for four years now. I enjoy teaching con-
current programming because I find it hard. Every
year my own understanding is improved thanks to my
teaching work. To become skilled takes experience, as
with all programming work, and in particular because
experience confers two things: conceptual clarity and
judgement. In a nutshell, my position is that curricula
must focus on accelerating students’ progress to these
two goals. We must emphasise judgement and rationale
over technique and technology. Concurrent program-
ming, in all its guises, represents a trade-off, just as
sequential programming does. The latter is unlikely to
go away, because sequential thinking comes naturally to
humans. Just as with all programming tasks, we must
teach students how to understand the underlying trade-
offs, know when various styles and techniques are suit-
able, and know how to evaluate the suitability of tech-
niques both present and future. My “nightmare sce-
nario” is that in training a generation of programmers
to unthinkingly use concurrent programming practices,
we will yield a huge quantity of unreliable and unmain-
tainable code, whose costs far outweight any parallel
performance gains.

2 Spending the transistor count

Throughout the 1980s and 1990s, an age of skyrock-
eting sequential performance, software generally didn’t
get much faster. Niklaus Wirth famously observed this
in his “plea for lean software” in the early 1990s [3].
For sure, certain new application classes opened up—
commodity computers became capable of astonishing
feats of multimedia processing in software, for exam-
ple. But in general, the popular everyday applications
of the last fifteen years (e-mail, the web, word process-
ing, and so on) have not been revolutionised by ongoing
increases in transistor counts.

If anything, transistors have effectively been spent
in enabling programmers to deliver results more
quickly—spending less time on optimisation, using
more profligate abstractions and coding styles, and
pressing existing software into use even in cases where
it is inefficient, so as to avoid the effort of creating and
proving a new system.1 Recent developments continue
this trend: a huge number of applications are now deliv-
ered as interpreted scripts (JavaScript), transmitted in
inefficient plain-text encodings and storing their data
similarly inefficiently (as XML), executing on poorly
optimised runtimes (web browsers). In the meantime,
transistors been spent on making programmers’ lives
easier and on hastening the social processes of software:
the web has allowed socially useful new deployment
models, driven by technology which is rather ill suited
but near-at-hand (namely XML, which happened to
derive from publishing systems, and JavaScript, whose
original role was far narrower than its use today). This
has avoided the time-consuming extra step of devel-
oping and standardising technologies which are opti-
mised for these purposes (which could be far more ef-
ficient, but would cost considerable time and effort to
produce).2

If we believe that increased transistor counts, now
being spent on multiple cores, are to be used for run-
ning highly concurrent programs, then it’s likely we
believe that this story is to be reversed: programmers’
lives are to get a lot harder, for the sake of exploiting
these processors. I would find this a strange develop-
ment. Earlier this year when marking some exercises
for my students, I discovered a major bug in the model
answer for a past exam question, which had been writ-
ten by the lecturer several years ago and had stood
uncorrected since. We should not underestimate how
intrinsically hard concurrency is: if lecturers and grad-
uate students make these errors, then however much
we improve pedagogy, educating a generation of pro-
fessional programmers who don’t make them seems like
an impossible task.

(There is a chance that, thanks to very clever run-
time support, programmers will be able to write highly
parallel code without worrying about most of the com-
plexity of concurrency. This is an ideal situation, but
it seems unlikely to me. I would greatly value the opin-
ion of other workshop participants on this, and on the
related question of whether our curricula are intended
primarily to educate the experts who build the very
clever runtimes, or those who merely use them. I am

1Butler Lampson observed this in his essay “Software Components: Only the Giants Survive” [1], although in light of my
disagreement with the remainder of piece, this should not be considered a positive citation.

2It’s arguable as to whether this has optimised the value of our software, but that’s a separate question.

writing on the assumption that the primary consider-
ation is the latter category; the former class probably
begin as members of the latter.)

3 Joining the dots

It might seem at this stage that I am advocating some-
thing ridiculous, such as a reduction or wholesale aban-
donment of concurrency teaching. On the contrary,
the importance of concurrency cannot be understated.
Concurrency is a pervasive concept: in programming,
in computers and in systems generally. Accordingly, it
is not new. Long before concurrent programming be-
came popular, we have had inter-device concurrency,
multiprogramming, asynchronous programming inter-
faces, reentrancy, coroutines and so forth. One of the
easy failings in teaching computer science is neglecting
to join the dots between kindred concepts appearing in
superficially distinct contexts. It therefore seems un-
controversial that concurrency deserves to be treated
as a first-class concept whose many guises can be ex-
posed, compared and contrasted in the treatment of
the various contexts in which they occur. I therefore
fully advocate “sprinkling” concurrency across teaching
of various topics—with the view that if those courses
didn’t mention concurrency previously, there was some-
thing wrong with them!

4 Contexts

Algorithms are one major context for discussion of con-
currency. Teaching of algorithms is steeped in sequen-
tial thinking, and this must change. Sequential algo-
rithms, concurrent algorithms (over a coherent shared
store) and fully distributed algorithms deserve equal
consideration, and there are huge potential gains from
considering these side-by-side rather than, as would
seem to be the usual practice, sidelining the non-
sequential cases into obscure corners of distributed sys-
tems teaching. (As a disclaimer: this may be a quirk
of my own institution.)

Language design is another context. When learn-
ing threaded programming, one perspective that my
students sometimes find useful is to regard threads as
a dynamic control structure. Much as a for-loop or if–
then–else construct describes what to do and when, so
does a set of threads; much as a pointer structure on
the heap differs by its dynamism from a set of arrays
in static storage, so does a dynamic set of threads from
a statically-elaborated control graph. Similarly, it is
enlightening to consider how some language constructs
are inherently parallelisable (of course threads, but also
perhaps a set of subexpressions with no predefined or-
der of evaluation) whereas others are surprisingly se-
quential (e.g. the sequence points and strictness rules
for short-circuit && or ||). Clearly, language design-
ers consider the trade-offs in deciding what semantics
to provide (typically trading off abstraction and com-
prehensibility with performance); similarly, language

users must consider similar trade-offs in the features
and styles which they choose to adopt.

5 The skill of restraint

When students first learn about multithreaded pro-
gramming, it’s as if they have been given a new box of
toys. Concurrent programming primitives, like threads
and locks and condition variables, are intricate and fas-
cinating objects which students are eager to play with.
Given any programming exercise, they will almost in-
variably use threads given any opportunity, and some-
times when given none at all. One exercise my stu-
dents do is to design a server for a networked tic-tac-toe
game. Since it is only ever one player’s turn at a time
in any game, one thread per game suffices; since games
share no data, no locks are needed on the board data
structure. None of my students so far has suggested
such a design, and rarely has the underlying design
process—of determining what degree of parallelism is
useful, and identifying what resources are shared—been
evident from their answer.

It is too easy to teach courses which describe the
mechanisms but not the concepts. My students’ de-
signs for the game server mostly do work—but to say
a program works is to give it relatively little praise. As
Brian Kernighan remarked, since debugging is harder
than coding, by writing very smart code you are giving
yourself an impossible debugging task. Similarly with
threaded programming, one skill is to avoid writing
code which is needlessly difficult to understand, debug
and maintain. More positively, some excellent tutorial-
style articles are available which emphasise concepts
over mechanism—Herb Sutter’s “Sharing is the Root
of all Contention” [2] springs to mind.

6 Introducing concurrency

Should concurrency be an introductory topic? In line
with my arguments so far, I’d argue yes—but as a con-
cept, rather than a technique. My institution does well
by teaching functional programming (using ML) in its
introductory course; this could also be a convenient
way of introducing concurrency relatively easily, since
parallelisability is clearer and the issues of side-effect,
mutable storage etc. already necessarily receive explicit
treatment.

References

[1] B. Lampson. Software components: Only the giants
survive. In K. Sparck-Jones and A. Herbert, edi-
tors, Computer Systems: Theory, Technology, and

Applications, pages 137–146. Springer, 2004.
[2] H. Sutter. Sharing is the root of all contention. Dr.

Dobb’s Journal, February 2009.
[3] N. Wirth. A plea for lean software. Computer,

28(2):64–68, 1995.

