
Adapting binary software with
multiple object layouts

Stephen Kell

Stephen.Kell@cl.cam.ac.uk

Adapting binary software. . . – p.1/11



Multiple object layouts

Linking together mismatched binaries. Why?

late composition

no source code?

What’s mismatched?

symbol names (easy)

assignment of meanings to values (tractable)

function signatures (tractable)

object layout

object model of application domain

communication structure, paradigm, . . .

Adapting binary software. . . – p.2/11



Software evolution

Experimental work right now: gtk-theme-switch

two functionally-identical C programs, ∼1000 lines

one uses Gtk+ 1.2, the other Gtk+ 2.0

small number of API changes, but. . .

. . . diff (-U3) is ∼500 lines

forked codebase (maintenance overhead)

why can’t one source program work with both libraries?

why can’t one binary work with both libraries?

Adapting binary software. . . – p.3/11



Two approaches

“Static” approach (a bit like RPC within one VAS):

find points where control-flow crosses “rep domains”

interpose code to

copy + transform into required representation. . .
. . . any heap objects needed on the other side.

“Dynamic” approach (a bit like pointer swizzling):

allocate multi-rep objects in special memory area. . .

. . . segregated by rep-domain at page granularity

keep copies for each rep behind the scenes

trap and copy/map on rep-mismatched accesses

Adapting binary software. . . – p.4/11



The static approach

What’s tricky:

function pointers

object identity

consistency (in multithreaded context)

knowing how much of the object graph to copy

knowing when to sync copies

objects of vague length

forked object modifications

deallocation

Adapting binary software. . . – p.5/11



A picture of the static approach

Adapting binary software. . . – p.6/11



The dynamic approach

The dynamic approach seems cleaner, but

need to handle SIGSEGV from user-space

want to do better than trapping on every access. . .

. . . trap transitions by protecting text pages?

still faults too much in some multithread cases
need access to NX bit from user-space

object identity and function pointers not a problem

sync problems somewhat eased

deallocation, sync frequency and forking still a problem

Adapting binary software. . . – p.7/11



A picture of the dynamic approach

Adapting binary software. . . – p.8/11



A possible third way

One could conceive other approaches:

intra-object relocations?

new point on fully-compiled – bytecode – . . . spectrum

. . . and a more general version of the problem:

no longer 1:1 correspondences between object reps. . .

instead must reformulate whole graphs at a time

wanted: a neat abstraction of graphs (grammars?)
pattern-matching / rewrite rules for the above

Adapting binary software. . . – p.9/11



Vote, and thank you

On my first whistle, you will start voting. . .

Thanks for your attention. Any questions?

Adapting binary software. . . – p.10/11



Source code

#include <gtk/gtk.h>

#define INIT_GTK if (!using_gtk) { gtk_init (&argc, &argv); using_gtk = 1; }

/∗ globals ∗/

GtkWidget ∗dockwin, ∗box;

int using_gtk = 0;

static void quit (void );

static void

dock (void )

{

GdkColormap ∗colormap;

dockwin = gtk_dialog_new();

gtk_widget_realize(dockwin);
Adapting binary software. . . – p.11/11


	Multiple object layouts
	Software evolution
	Two approaches
	The static approach
	A picture of the static approach
	The dynamic approach
	A picture of the dynamic approach
	A possible third way
	Vote, and thank you
	Source code

