- N

Adapting binary software with
multiple object layouts

Stephen Kell

St ephen. Kel | @l . cam ac. uk

Multiple object layouts
=

Linking together mismatched binaries. Why?

late composition
® Nno source code?

What's mismatched?

symbol names (easy)

assignment of meanings to values (tractable)
function signatures (tractable)

object layout

object model of application domain

© o o o o 0

communication structure, paradigm, ...

|

Adapting binary software. .. — p.2/11

e

Xperimental work right now: gt k-t hene-sw t ch

Softwar e evolution

Theme: | Default ﬂ@ Thieas | Defalt v |k

Apply | Frewview | | Apply | Preview

© o o o o o ©

two functionally-identical C programs, ~1000 lines

one uses Gtk+ 1.2, the other Gtk+ 2.0

small number of APl changes, but. ..

... diff (- U3) i1s ~500 lines

forked codebase (maintenance overhead)

why can’t one source program work with both libraries?
why can’t one binary work with both libraries? J

Adapting binary software. .. — p.3/11

Two approaches

- N

‘Static” approach (a bit like RPC within one VAS):

find points where control-flow crosses “rep domains”
interpose code to

s copy + transform into required representation. ..
s ...any heap objects needed on the other side.

“Dynamic” approach (a bit like pointer swizzling):

allocate multi-rep objects in special memory area. ..
® ...segregated by rep-domain at page granularity
#® keep copies for each rep behind the scenes
L # trap and copy/map on rep-mismatched accesses J

Adapting binary software. .. — p.4/11

Thestatic approach
w

hat’s tricky:

function pointers

object identity

consistency (in multithreaded context)
knowing how much of the object graph to copy
knowing when to sync copies

objects of vague length

forked object modifications

© © o o o o o ©

deallocation

o |

Adapting binary software. .. — p.5/11

A picture of the static approach

- N

GTK_SCROLLED_WINDOW

-

clist_insert »
/ GTK_CLIST

main —————® strcmp

fprintf GTK_BOX

GTK_TEXT

|

Adapting binary software. .. — p.6/11

.

K
9

9

o o

he dynamic approach seems cleaner, but

Thedynamic approach

need to handle SIGSEGV from user-space
want to do better than trapping on every access. ..
... trap transitions by protecting text pages?

s still faults too much in some multithread cases
» need access to NX bit from user-space

object identity and function pointers not a problem
sync problems somewhat eased
deallocation, sync frequency and forking still a problem

|

Adapting binary software. .. —p.7/11

A picture of the dynamic approach

-

obj = malloc(42);

magic_malloc(size t)

rep 1 objects

rep 2 objects

r---------1

B

A possiblethird way
=

One could conceive other approaches:

-

intra-object relocations?
new point on fully-compiled — bytecode — ... spectrum

...and a more general version of the problem:

no longer 1:1 correspondences between object reps...
instead must reformulate whole graphs at a time

s wanted: a neat abstraction of graphs (grammars?)
s pattern-matching / rewrite rules for the above

o |

Adapting binary software. .. — p.9/11

Vote, and thank you
=

On my first whistle, you will start voting. ..

Thanks for your attention. Any questions?

o

Adapting binary software. . .

—p.10/11

Sour ce code

- N

#include <gtk/gtk.nh>
#define INIT_GTK if (lusing_gtk) { gtk _init (&argc, &argv); using_gtk =1; }

/% globals x/

GtkWidget xdockwin, xbox;
int using_gtk = 0;

static void quit(void);

static void
dock (void)

{

\— GdkColormap xcolormap; J

dockwin = gtk _dialog_new();
Adapting binary software. .. — p.11/11
~Ntl, wwinAA~aant raaliAafAaAaciarnn):

	Multiple object layouts
	Software evolution
	Two approaches
	The static approach
	A picture of the static approach
	The dynamic approach
	A picture of the dynamic approach
	A possible third way
	Vote, and thank you
	Source code

